

DOI 10.35694/YARCX.2021.54.2.002

ВЛИЯНИЕ ВНЕКОРНЕВОЙ ПОДКОРМКИ БОРОСОДЕРЖАЩИМИ ХЕЛАТНЫМИ КОМПЛЕКСОНАМИ НА ПРОДУКТИВНОСТЬ И КАЧЕСТВО ЛЬНОПРОДУКЦИИ

А. И. Беленков (фото)

д-р с.-х. наук, профессор, профессор кафедры земледелия и методики опытного дела

В. Н. Мельников

канд. с.-х. наук, доцент, доцент кафедры растениеводства и луговых экосистем

ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К. А. Тимирязева», г. Москва А. А. Петрова

канд. с.-х. наук, доцент, старший научный сотрудник лаборатории агроинженерных технологий

ФГБНУ Федеральный научный центр лубяных культур, г. Тверь Т. И. Смирнова

канд. хим. наук, доцент, доцент кафедры агрохимии и земледелия

М. Н. Павлов

канд. с.-х. наук, доцент кафедры агрохимии и земледелия ФГБОУ ВО Тверская ГСХА, г. Тверь

В настоящее время в сельскохозяйственном производстве возрастает роль льна-долгунца (*Linumus itatissimum L.*) как одной из важнейших прядильных культур [1]. Льняное волокно в два раза крепче хлопкового и в три — шерстяного. Из него изготовляют множество видов ткани, которые характеризуются длительным использованием и противостоят гниению. Семена льна содержат высококачественное масло (35–42%), используемое в пищевой, парфюмерной, бумажной, мыловаренной, электротехнической и других отраслях промышленности. Льняной жмых является эффективным концентрированным кормом для животных [2].

Почвы Нечерноземья характеризуются низким содержанием большинства необходимых растениям элементов питания, в частности – микроэлементов. Снижение урожайности вследствие влияния этого фактора можно компенсировать применением удобрений, содержащих микроэлементы, в частности бор [3; 4]. Дефицит последнего негативно сказывается на урожайности культивируемых растений и качестве продукции льноводства, приводит к замедлению растяжения и деления клеток, и как следствие — роста и развития растений [5; 6]. Из почвы растения получают бор в форме борат-анионов, способных к образованию хелатных комплексов с различными лигандами [7]. К таким лигандам относится этилендиаминдиянтарная кислота [8; 9; 10]. Как свойства, так и биологическая активность борат-этилендиаминдисукцинатного комплекса (В-ЭДДЯК) мало исследованы, но представляют большой теоретический и практический интерес, поскольку микроэ-

Лён-долгунец, внекорневая подкормка, микроудобрение, бор, комплексоны, хелатные комплексы, урожайность, качество продукции

Long-stalked flax, foliage application, micronutrient, boron, complexones, chelate complexes, yield, product quality

лементы лучше всего усваиваются растениями в форме комплексных соединений хелатного типа. Вместе с тем рост негативного воздействия на окружающую среду ставит перед сельхозтоваропроизводителями задачу внедрения в производство экологически безопасных удобрений. В связи с этим проведение исследований для изучения и выявления эффективности применения экологически безопасных боратных хелатных соединений на растениях льна-долгунца, направленных на повышение показателей продуктивности и качества льнопродукции, представляется необходимым и целесообразным.

Цель исследований — сравнить и изучить влияние внекорневой подкормки боросодержащими комплексонами на продуктивность и качество льнопродукции.

Методика исследований

Исследования выполнили в 2019–2020 гг. в однофакторном полевом опыте (рис. 1).

Основными объектами исследования являются растения льна-долгунца, внекорневая подкормка боросодержащими соединениями.

Почва опытного участка дерново-среднеподзолистая остаточно карбонатная глееватая, супесчаная по гранулометрическому составу, хорошо окультурена. Почвообразующая порода — карбонатная морена. Содержание органического вещества составляет 2,3—2,2% (по Тюрину), щёлочногидролизуемого азота — 100 мг/кг (по Корнфилду), ${\rm P_2O_5} - 220 - 230$ и ${\rm K_2O} - 110 - 120$ мг/кг (по Кирсанову), ${\rm pH_{con.}} - 5,6.$

Схема опыта:

- 1. Контроль (вода);
- 2. Борная кислота;
- 3. В-ЭДТУК (борат-этилендиаминтетрауксусная кислота);
- 4. В-ЭДДЯК (борат-этилендиаминдисукцинатный комплекс);
 - 5. В-ИДЯК (боратиминодиянтарная кислота).

Способ внесения препаратов — внекорневая подкормка в фазу быстрого роста растений. Концентрация растворов — 0,002 моль/л.

Известно, что в растениях бор не утилизируется, и при его дефиците в большей степени происходят негативные изменения в верхней части растений. В связи с этим оптимальным является способ внесения препаратов — внекорневая подкормка растворами исследуемых боросодержащих соединений. Этот способ апробирован и подтверждён предыдущими опытами [8].

Площадь учётной делянки — 4 м 2 . Площадь под опытом — 80 м 2 . Повторность в опыте четырёх-кратная. Общая площадь посева льна-долгунца — 1 га. Объект исследований — лён-долгунец сорта Надежда, рекомендованный к использованию по Тверской области.

В опыте соблюдали традиционную для возделывания льна-долгунца агротехнику. Предшественник – зерновые культуры. Под предпосевную культивацию вносили нитроаммофоску в дозе

Рисунок 1 - Опытные посевы льна-долгунца

1 ц/га. В фазу ёлочки посевы льна обрабатывали гербицидами — баковой смесью (агритокс + секатор турбо).

Исследования проводили по существующим стандартным методикам. Урожайность определяли путём взвешивания растений и семян с учётной площади делянки. Качество соломы льна определяли по ГОСТ 28285-89. Проводили дисперсионный анализ урожайных данных с помощью приложения AgCStat

Результаты исследований

Выявлена положительная динамика влияния некорневой подкормки на прохождение фенологических фаз растениями льна во второй половине вегетации. Применение боросодержащих комплексов ускорило цветение льна, которое наступало раньше на 2-3 дня по сравнению с контролем. Жёлтая спелость на удобренных вариантах наступила на 2-4 дня позднее, что способствовало повышению урожайности семян льна. Внесение подкормки хелатными комплексами оказало существенное влияние на густоту стояния растений льна перед уборкой и продуктивность соцветий и коробочек льна-долгунца. Анализ сохранности растений льна-долгунца (2019–2020 гг.) показывает, что применение боросодержащих соединений увеличило этот показатель на 3,6-4,3% по сравнению с неудобренным контролем. Количество и масса 1000 семян являются важными показателями структуры урожая. Так, из комплексонов лучшим был боратный хелатный комплекс В-ЭДДЯК (44,8 шт. и 5,6 г соответственно). Из боросодержащих соединений В-ИДЯК и В-ЭДТУК имели преимущество над борной кислотой.

Исследования соломы льна показали, что внекорневая подкормка боросодержащими комплексами способствовала повышению длины стебля в среднем по двум годам на 6,5–8 см по сравнению с контролем, что положительно повлияло на конечную продуктивность растений.

Продуктивность агроценоза льна-долгунца оценивалась по наиболее производственно ценным показателям — сбору с гектара соломы и семян. Выявлено, что на формирование высокой продуктивности льна большое влияние оказывает густота стояния растений перед уборкой. Сохранение густоты стояния растений вместе с ростом продуктивности коробочек оказало положительное влияние на общую урожайность льна.

Анализ урожайности за два года свидетельствует о том, что внекорневая подкормка боросодержащими соединениями способствует росту урожайности льна-долгунца. Исследования показали, что внекорневая подкормка растений повышала продуктивность льна-долгунца по сравнению с контролем без обработки. Обработка боросодержащими соединениями обеспечила получение прибавки урожая льносоломы в среднем на 8,3-15,7%. Она составила 3,2-6 ц/га к контролю. Более существенная прибавка получена по семенам льна-долгунца – от 1,2 ц/га (38,4%) до 1,9 ц/га (56%). Урожайность соломы и семян без подкормки – 38,2 и 3,1 ц/га соответственно. В среднем по опыту урожайность составила по соломе и семенам 41,5 и 4,4 ц/га соответственно (табл. 1).

Результаты инструментальной оценки качества льносоломы по ГОСТу 28285-89 показали, что подкормка боросодержащими комплексами положительно повлияла на показатели её качества

Таблица 1 – Урожайность льна-долгунца (соломы и семян) в 2019–2020 гг., ц/га

Вариант опыта			+/- к контролю, ц/га/ %					
	соломы				семян			
	2019 г.	2020 г.	ср. за 2019– 2020 гг.	2019 г.	2020 г.	ср. за 2019– 2020 гг.	соломы	семян
1. Контроль (вода)	38,8	37,5	38,2	3,4	2,9	3,1	-	-
2. Борная кислота	42,8	40,2	41,5	4,3	4,2	4,3	+3,3/8,6	+1,2/38,4
з. в-эдтук	41,9	40,8	41,4	4,8	4,3	4,6	+3,2/8,3	+1,3/41,1
4. в-эддяк	44,7	43,6	44,2	5,3	4,8	5,1	+6,0/15,7	+1,9/56,0
5. в-идяк	42,7	41,3	42,0	5,1	4,5	4,8	+3,8/9,9	+1,7/50,0
В среднем по вариантам (1-5)	42,2	40,7	41,5	4,6	4,1	4,4	-	-
HCP _{0,05}	1,1	1,1	-	0,49	0,38	-	-	-

(табл. 2) и улучшила физико-химические свойства льнопродукции.

Техническая длина соломы была выше у всех вариантов опыта по сравнению с контролем на 8,5–10,4%. При этом увеличивались: выход луба, прочность, пригодность и номер льносоломы. Содержание луба колебалось от 31,3 до 34,2%, в

зависимости от подкормки. Прибавка к контролю составила от 1,6 до 4,5%.

Внесение комплексоната (В-ЭДДЯК) способствовало повышению продуктивности растений. Выявлено, что бор в составе В-ЭДДЯК более интенсивно, по сравнению с нехелатированной формой, поглощается растениями. При внекорневой

Таблица 2 – Влияние внекорневой подкормки на качество льносоломы 2019–2020 гг.

Вариант опыта	Техническая длина, см			Выход луба, %			Прочность, дан		
	2019 г.	2020 г.	Среднее	2019 г.	2020 г.	Среднее	2019 г.	2020 г.	Среднее
1. Контроль (вода)	77	76	76,5	29,5	30	29,7	18,0	20	19,0
2. Борная кислота	86	80	83,0	32,3	31	31,6	20,6	23	21,8
3. В-ЭДТУК	85	81	83,0	30,8	31	30,9	20,0	22	21,0
4. в-эддяк	87	82	84,5	33,4	35	34,2	23,9	24	23,9
5. В-ИДЯК	85	81	83,0	31,7	32	31,3	22,8	23	22,9

подкормке часть препарата, попадая в почву, мобилизует также другие микроэлементы, тем самым оказывая стимулирующее действие на растения.

Заключение

Полученные в двухлетнем полевом опыте результаты показали, что внекорневая подкормка боросодержащими соединениями существенно повлияла на накопление биомассы льна-долгунца. Выявлена положительная динамика влияния боросодержащих комплексов на прохождение фенологических фаз во второй половине вегетации. Внекорневая подкормка растений ускорила цветение льна, которое наступало раньше на 2–3 дня по сравнению с контролем.

Применение подкормки хелатными боросодержащими комплексонами способствует росту урожайности льна-долгунца и улучшает физико-химические свойства льноволокна. Прибавка урожая к контролю составила: по соломе — 8,3—15,7% (3,2—6 ц/га), по семенам — 38,4—56% (1,2—1,9 ц/га). При этом увеличивались: выход луба, прочность, пригодность и номер льносоломы. Содержание луба колебалось от 31,3 до 34,2%, в зависимости от подкормки, прибавка к контролю получена от 1,6 до 4,5%.

Наиболее эффективное и экологически безопасное влияние оказывает внекорневая подкормка посевов льна-долгунца хелатным комплексом В-ЭДДЯК. При внекорневой подкормке часть препарата, попадая в почву, мобилизует также другие микроэлементы, тем самым оказывая стимулирующее действие на растения. Применение борат-этилендиаминдисукцинатного комплекса (В-ЭДДЯК) в качестве борного микроудобрения для некорневой подкормки льна-долгунца определяется увеличением продуктивности и повышением качества льнопродукции.

Литература

- 1. Прудников, А. Д. Потенциал льняного поля: монография / А. Д. Прудников, А. В. Кучумов, Т. И. Рыбченко [и др.]. Москва: ООО «Научный консультант», 2018. 120 с. ISBN 978-5-907084-26-1. Текст: непосредственный.
- 2. Посыпанов, Г. С. Растениеводство / Г. С. Посыпанов, В. Е. Долгодворов, Б. Х. Жеруков [и др.]. Москва : ИНФРА-М, 2019. 612 с. ISBN 978-5-16-010598-7. Текст : непосредственный.
- 3. Физиология растений / Н. Д. Алехина [и др.]; под ред. И. П. Ермакова. 2-е изд., испр. Москва: Академия, 2007. — 634. — ISBN 978-5-7695-3688-5. — Текст: непосредственный.
- 4. Прудников, В. А. Эффективность применения микроудобрений при возделывании льна-долгунца на супесчаной почве / В. А. Прудников, Д. П. Чирик, Н. В. Степанова, С. Р. Чуйко. Текст: непосредственный // Вестник Белорусской государственной сельскохозяйственной академии. 2021. № 1. С. 139–142. ISSN 2076-5215.
- 5. Толкачева, Л. Н. Физико-химическое исследование процессов комплексообразования элементов III-А подгруппы с комплексонами, производными янтарной кислоты : специальность 02.00.04 «Физическая

химия» : диссертация на соискание ученой степени кандидата химических наук / Людмила Николаевна Тол-качева ; Твер. гос. ун-т. – Тверь, 2012. – 124 с. – Текст : непосредственный.

- 6. Смирнова, Т. И. Изменение содержания пектиновых веществ в каланхоэ в результате обработки соединениями бора / Т. И. Смирнова, П. В. Ромась, И. Н. Барановский, М. А. Соколов. Текст: непосредственный // Физико-химия полимеров: синтез, свойства и применение. 2012. Вып. 18. С. 209–211. ISSN 1997-7271.
- 7. Дятлова, Н. М. Комплексоны и комплексонаты металлов / Н. М. Дятлова, В. Я. Темкина, К. И. Попов. Москва: Химия, 1988. 543 с. ISBN 5-7245-0107-4. Текст: непосредственный.
- 8. Петрова, А. А. Увеличение пищевой ценности картофеля при использовании боросодержащего хелатного соединения / А. А. Петрова, Т. И. Смирнова, М. Н. Павлов, И. А. Дроздов. Текст: непосредственный // Успехи современного естествознания. 2019. № 10. С. 13–17. ISSN 1681-7494.
- 9. Плешков, Б. П. Биохимия сельскохозяйственных растений / Б. П. Плешков. 5-е изд., перераб. и доп. Москва: Агропромиздат, 1987. 486 с. Текст: непосредственный.
- 10. Янчевская, Т. Физиолого-биохимическая оптимизация минерального питания растений: монография / Т. Янчевская. Германия: LAP LAMBERT Acad. Publ., 2018. 556 с. ISBN 978-613-7-70950-4. Текст: электронный. URL: https://znanium.com/catalog/product/1073131.

References

- 1. Prudnikov, A. D. Potencial l'njanogo polja : monografija / A. D. Prudnikov, A. V. Kuchumov, T. I. Rybchenko [i dr.]. Moskva : OOO «Nauchnyj konsul'tant», 2018. 120 c. ISBN 978-5-907084-26-1. Tekst : neposredstvennyj.
- 2. Posypanov, G. S. Rastenievodstvo / G. S. Posypanov, V. E. Dolgodvorov, B. Kh. Zherukov [i dr.]. Moskva: INFRA-M, 2019. 612 s. ISBN 978-5-16-010598-7. Tekst: neposredstvennyj.
- 3. Fiziologija rastenij / N. D. Alekhina [i dr.]; pod red. I. P. Ermakova. 2-e izd., ispr. Moskva: Akademija, 2007. 634. ISBN 978-5-7695-3688-5. Tekst: neposredstvennyj.
- 4. Prudnikov, V. A. Jeffektivnost' primenenija mikroudobrenij pri vozdelyvanii l'na-dolgunca na supeschanoj pochve / V. A. Prudnikov, D. P. Chirik, N. V. Stepanova, S. R. Chujko. Tekst : neposredstvennyj // Vestnik Belorusskoj gosudarstvennoj sel'skohozjajstvennoj akademii. 2021. № 1. S. 139–142. ISSN 2076-5215.
- 5. Tolkacheva, L. N. Fiziko-himicheskoe issledovanie processov kompleksoobrazovanija jelementov III-A podgruppy s kompleksonami, proizvodnymi jantarnoj kisloty : special'nost' 02.00.04 «Fizicheskaja himija» : dissertacija na soiskanie uchenoj stepeni kandidata himicheskih nauk / Lyudmila Nikolaevna Tolkacheva ; Tver. gos. un-t. Tver', 2012. 124 s. Tekst : neposredstvennyj.
- 6. Smirnova, T. I. Izmenenie soderzhanija pektinovyh veshhestv v kalanhoje v rezul'tate obrabotki soedinenijami bora / T. I. Smirnova, P. V. Romas', I. N. Baranovskij, M. A. Sokolov. Tekst: neposredstvennyj // Fiziko-himija polimerov: sintez, svojstva i primenenie. 2012. Vyp. 18. S. 209–211. ISSN 1997-7271.
- 7. Dyatlova, N. M. Kompleksony i kompleksonaty metallov / N. M. Dyatlova, V. Ya. Temkina, K. I. Popov. Moskva: Himija, 1988. 543 s. ISBN 5-7245-0107-4. Tekst: neposredstvennyj.
- 8. Petrova, A. A. Uvelichenie pishhevoj cennosti kartofelja pri ispol'zovanii borosoderzhashhego helatnogo soedinenija / A. A. Petrova, T. I. Smirnova, M. N. Pavlov, I. A. Drozdov. Tekst: neposredstvennyj // Uspehi sovremennogo estestvoznanija. 2019. № 10. S. 13–17. ISSN 1681-7494.
- 9. Pleshkov, B. P. Biohimija sel'skohozjajstvennyh rastenij / B. P. Pleshkov. 5-e izd., pererab. i dop. Moskva : Agropromizdat, 1987. 486 s. Tekst : neposredstvennyj.
- 10. Yanchevskaya, T. Fiziologo-biohimicheskaja optimizacija mineral'nogo pitanija rastenij : monografija / T. Yanchevskaya. Germanija : LAP LAMBERT Acad. Publ., 2018. 556 s. ISBN 978-613-7-70950-4. Tekst : jelektronnyj. URL: https://znanium.com/catalog/product/1073131.

